repl.it
linkUnit Testing
[W11.5a] Quality Assurance → Testing → Unit Testing → What
[W11.5b] Quality Assurance → Testing → Unit Testing → Stubs
Integration Testing
[W11.5c] Quality Assurance → Testing → Integration Testing → What
[W11.5d] Quality Assurance → Testing → Integration Testing → How
System Testing
Acceptance Testing
[W11.5f] Quality Assurance → Testing → Acceptance Testing → What
[W11.5g] Quality Assurance → Testing → Acceptance Testing → Acceptance vs System Testing
Alpha/Beta Testing
Can draw intermediate-level sequence diagrams
What’s going on here?
Logic
object is executing a parallel thread.Logic
object is executing a loop.Logic
object is creating another Logic
instance.Logic
object’s methods is calling another of its methods.Minefield
object is calling a method of Logic
.(d)
Explain the interactions depicted in this sequence diagram.
First, the createParser()
method of an existing ParserFactory
object is called. Then, ...
Draw a sequence diagram to represent this code snippet.
if (isFirstPage) {
new Quote().print();
}
The Quote
class:
class Quote{
String q;
Quote(){
q = generate();
}
String generate(){
// ...
}
void print(){
System.out.println(q);
}
}
new Quote().print();
as two method calls.print()
method is called.
Can use Java8 streams
Java 8 introduced a number of new features (e.g. Lambdas, Streams) that are not trivial to learn but also extremely useful to know.
Here is an overview of new Java 8 features .(written by Benjamin Winterberg)
Tutorials:
Java 8 Tutorial -- from tutorialspoint.com. Also provides a way to try out code online
A video tutorial by well-known Java coach Venkat Subramaniam
Can use JavaFX to build a simple GUI
JavaFX is a technology for building Java-based GUIs. Previously it was a part Java itself, but has become a third-party dependency since then. It is now being maintained by OpenJDK.
Can use JAR files
Java applications are typically delivered as JAR (short for Java Archive) files. A JAR contains Java classes and other resources (icons, media files, etc.).
An executable JAR file can be launched using the java -jar
command.
java -jar foo.jar
launches the foo.jar
file.
You can download the Collate-GUI.jar from https://se-edu.github.io/collate/ and run it using the commandjava -jar Collate-GUI.jar
command.
The IDE can help you to package your application as a JAR file.
Creating a JAR file in Intellij - A video by Artur Spirin:
Can explain unit testing
Unit testing: testing individual units (methods, classes, subsystems, ...) to ensure each piece works correctly
In OOP code, it is common to write one or more unit tests for each public method of a class.
Here are the code skeletons for a Foo
class containing two methods and a FooTest
class that contains unit tests for those two methods.
class Foo{
String read(){
//...
}
void write(String input){
//...
}
}
class FooTest{
@Test
void read(){
//a unit test for Foo#read() method
}
@Test
void write_emptyInput_exceptionThrown(){
//a unit tests for Foo#write(String) method
}
@Test
void write_normalInput_writtenCorrectly(){
//another unit tests for Foo#write(String) method
}
}
import unittest
class Foo:
def read(self):
# ...
def write(self, input):
# ...
class FooTest(unittest.TestCase):
def test_read(sefl):
# a unit test for read() method
def test_write_emptyIntput_ignored(self):
# a unit tests for write(string) method
def test_write_normalInput_writtenCorrectly(self):
# another unit tests for write(string) method
Side readings:
Can use stubs to isolate an SUT from its dependencies
A proper unit test requires the unit to be tested in isolation so that bugs in the
If a Logic
class depends on a Storage
class, unit testing the Logic
class requires isolating the Logic
class from the Storage
class.
Stubs can isolate the
Stub: A stub has the same interface as the component it replaces, but its implementation is so simple that it is unlikely to have any bugs. It mimics the responses of the component, but only for the a limited set of predetermined inputs. That is, it does not know how to respond to any other inputs. Typically, these mimicked responses are hard-coded in the stub rather than computed or retrieved from elsewhere, e.g. from a database.
Consider the code below:
class Logic {
Storage s;
Logic(Storage s) {
this.s = s;
}
String getName(int index) {
return "Name: " + s.getName(index);
}
}
interface Storage {
String getName(int index);
}
class DatabaseStorage implements Storage {
@Override
public String getName(int index) {
return readValueFromDatabase(index);
}
private String readValueFromDatabase(int index) {
// retrieve name from the database
}
}
Normally, you would use the Logic
class as follows (note how the Logic
object depends on a DatabaseStorage
object to perform the getName()
operation):
Logic logic = new Logic(new DatabaseStorage());
String name = logic.getName(23);
You can test it like this:
@Test
void getName() {
Logic logic = new Logic(new DatabaseStorage());
assertEquals("Name: John", logic.getName(5));
}
However, this logic
object being tested is making use of a DataBaseStorage
object which means a bug in the DatabaseStorage
class can affect the test. Therefore, this test is not testing Logic
in isolation from its dependencies and hence it is not a pure unit test.
Here is a stub class you can use in place of DatabaseStorage
:
class StorageStub implements Storage {
@Override
public String getName(int index) {
if(index == 5) {
return "Adam";
} else {
throw new UnsupportedOperationException();
}
}
}
Note how the StorageStub
has the same interface as DatabaseStorage
, is so simple that it is unlikely to contain bugs, and is pre-configured to respond with a hard-coded response, presumably, the correct response DatabaseStorage
is expected to return for the given test input.
Here is how you can use the stub to write a unit test. This test is not affected by any bugs in the DatabaseStorage
class and hence is a pure unit test.
@Test
void getName() {
Logic logic = new Logic(new StorageStub());
assertEquals("Name: Adam", logic.getName(5));
}
In addition to Stubs, there are other type of replacements you can use during testing. E.g. Mocks, Fakes, Dummies, Spies.
Stubs help us to test a component in isolation from its dependencies.
True
Can explain integration testing
Integration testing : testing whether different parts of the software work together (i.e. integrates) as expected. Integration tests aim to discover bugs in the 'glue code' related to how components interact with each other. These bugs are often the result of misunderstanding of what the parts are supposed to do vs what the parts are actually doing.
Suppose a class Car
users classes Engine
and Wheel
. If the Car
class assumed a Wheel
can support 200 mph speed but the actual Wheel
can only support 150 mph, it is the integration test that is supposed to uncover this discrepancy.
Can use integration testing
Integration testing is not simply a case of repeating the unit test cases using the actual dependencies (instead of the stubs used in unit testing). Instead, integration tests are additional test cases that focus on the interactions between the parts.
Suppose a class Car
uses classes Engine
and Wheel
. Here is how you would go about doing pure integration tests:
a) First, unit test Engine
and Wheel
.
b) Next, unit test Car
in isolation of Engine
and Wheel
, using stubs for Engine
and Wheel
.
c) After that, do an integration test for Car
using it together with the Engine
and Wheel
classes to ensure the Car
integrates properly with the Engine
and the Wheel
.
In practice, developers often use a hybrid of unit+integration tests to minimize the need for stubs.
Here's how a hybrid unit+integration approach could be applied to the same example used above:
(a) First, unit test Engine
and Wheel
.
(b) Next, unit test Car
in isolation of Engine
and Wheel
, using stubs for Engine
and Wheel
.
(c) After that, do an integration test for Car
using it together with the Engine
and Wheel
classes to ensure the Car
integrates properly with the Engine
and the Wheel
. This step should include test cases that are meant to test the unit Car
(i.e. test cases used in the step (b) of the example above) as well as test cases that are meant to test the integration of Car
with Wheel
and Engine
(i.e. pure integration test cases used of the step (c) in the example above).
Note that you no longer need stubs for Engine
and Wheel
. The downside is that Car
is never tested in isolation of its dependencies. Given that its dependencies are already unit tested, the risk of bugs in Engine
and Wheel
affecting the testing of Car
can be considered minimal.
Can explain system testing
System testing: take the whole system and test it against the system specification.
System testing is typically done by a testing team (also called a QA team).
System test cases are based on the specified external behavior of the system. Sometimes, system tests go beyond the bounds defined in the specification. This is useful when testing that the system fails 'gracefully' having pushed beyond its limits.
Suppose the SUT is a browser supposedly capable of handling web pages containing up to 5000 characters. Given below is a test case to test if the SUT fails gracefully if pushed beyond its limits.
Test case: load a web page that is too big
* Input: load a web page containing more than 5000 characters.
* Expected behavior: abort the loading of the page and show a meaningful error message.
This test case would fail if the browser attempted to load the large file anyway and crashed.
System testing includes testing against non-functional requirements too. Here are some examples.
Can explain acceptance testing
Acceptance testing (aka User Acceptance Testing (UAT): test the system to ensure it meets the user requirements.
Acceptance tests give an assurance to the customer that the system does what it is intended to do. Acceptance test cases are often defined at the beginning of the project, usually based on the use case specification. Successful completion of UAT is often a prerequisite to the project sign-off.
Can explain the differences between system testing and acceptance testing
Acceptance testing comes after system testing. Similar to system testing, acceptance testing involves testing the whole system.
Some differences between system testing and acceptance testing:
System Testing | Acceptance Testing |
---|---|
Done against the system specification | Done against the requirements specification |
Done by testers of the project team | Done by a team that represents the customer |
Done on the development environment or a test bed | Done on the deployment site or on a close simulation of the deployment site |
Both negative and positive test cases | More focus on positive test cases |
Note: negative test cases: cases where the SUT is not expected to work normally e.g. incorrect inputs; positive test cases: cases where the SUT is expected to work normally
Requirement Specification vs System Specification
The requirement specification need not be the same as the system specification. Some example differences:
Requirements Specification | System Specification |
---|---|
limited to how the system behaves in normal working conditions | can also include details on how it will fail gracefully when pushed beyond limits, how to recover, etc. specification |
written in terms of problems that need to be solved (e.g. provide a method to locate an email quickly) | written in terms of how the system solve those problems (e.g. explain the email search feature) |
specifies the interface available for intended end-users | could contain additional APIs not available for end-users (for the use of developers/testers) |
However, in many cases one document serves as both a requirement specification and a system specification.
Passing system tests does not necessarily mean passing acceptance testing. Some examples:
Choose the correct statements about system testing and acceptance testing.
(a)(b)(c)(d)(e)(f)
Explanation:
(b) is correct because system testing can aim to cover all specified behaviors and can even go beyond the system specification. Therefore, system testing is typically more extensive than acceptance testing.
(f) is incorrect because it is possible for a system to pass system tests but fail acceptance tests.
Can explain alpha and beta testing
Alpha testing is performed by the users, under controlled conditions set by the software development team.
Beta testing is performed by a selected subset of target users of the system in their natural work setting.
An open beta release is the release of not-yet-production-quality-but-almost-there software to the general population. For example, Google’s Gmail was in 'beta' for many years before the label was finally removed.